3.2553 \(\int \frac{(5-x) \sqrt{3+2 x}}{2+5 x+3 x^2} \, dx\)

Optimal. Leaf size=55 \[ -\frac{2}{3} \sqrt{2 x+3}+12 \tanh ^{-1}\left (\sqrt{2 x+3}\right )-\frac{34}{3} \sqrt{\frac{5}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{2 x+3}\right ) \]

[Out]

(-2*Sqrt[3 + 2*x])/3 + 12*ArcTanh[Sqrt[3 + 2*x]] - (34*Sqrt[5/3]*ArcTanh[Sqrt[3/5]*Sqrt[3 + 2*x]])/3

________________________________________________________________________________________

Rubi [A]  time = 0.0462726, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {824, 826, 1166, 207} \[ -\frac{2}{3} \sqrt{2 x+3}+12 \tanh ^{-1}\left (\sqrt{2 x+3}\right )-\frac{34}{3} \sqrt{\frac{5}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{2 x+3}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((5 - x)*Sqrt[3 + 2*x])/(2 + 5*x + 3*x^2),x]

[Out]

(-2*Sqrt[3 + 2*x])/3 + 12*ArcTanh[Sqrt[3 + 2*x]] - (34*Sqrt[5/3]*ArcTanh[Sqrt[3/5]*Sqrt[3 + 2*x]])/3

Rule 824

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(g
*(d + e*x)^m)/(c*m), x] + Dist[1/c, Int[((d + e*x)^(m - 1)*Simp[c*d*f - a*e*g + (g*c*d - b*e*g + c*e*f)*x, x])
/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*
e^2, 0] && FractionQ[m] && GtQ[m, 0]

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(5-x) \sqrt{3+2 x}}{2+5 x+3 x^2} \, dx &=-\frac{2}{3} \sqrt{3+2 x}+\frac{1}{3} \int \frac{49+31 x}{\sqrt{3+2 x} \left (2+5 x+3 x^2\right )} \, dx\\ &=-\frac{2}{3} \sqrt{3+2 x}+\frac{2}{3} \operatorname{Subst}\left (\int \frac{5+31 x^2}{5-8 x^2+3 x^4} \, dx,x,\sqrt{3+2 x}\right )\\ &=-\frac{2}{3} \sqrt{3+2 x}-36 \operatorname{Subst}\left (\int \frac{1}{-3+3 x^2} \, dx,x,\sqrt{3+2 x}\right )+\frac{170}{3} \operatorname{Subst}\left (\int \frac{1}{-5+3 x^2} \, dx,x,\sqrt{3+2 x}\right )\\ &=-\frac{2}{3} \sqrt{3+2 x}+12 \tanh ^{-1}\left (\sqrt{3+2 x}\right )-\frac{34}{3} \sqrt{\frac{5}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{3+2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0155823, size = 55, normalized size = 1. \[ -\frac{2}{3} \sqrt{2 x+3}+12 \tanh ^{-1}\left (\sqrt{2 x+3}\right )-\frac{34}{3} \sqrt{\frac{5}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{2 x+3}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((5 - x)*Sqrt[3 + 2*x])/(2 + 5*x + 3*x^2),x]

[Out]

(-2*Sqrt[3 + 2*x])/3 + 12*ArcTanh[Sqrt[3 + 2*x]] - (34*Sqrt[5/3]*ArcTanh[Sqrt[3/5]*Sqrt[3 + 2*x]])/3

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 53, normalized size = 1. \begin{align*} -{\frac{2}{3}\sqrt{3+2\,x}}-{\frac{34\,\sqrt{15}}{9}{\it Artanh} \left ({\frac{\sqrt{15}}{5}\sqrt{3+2\,x}} \right ) }+6\,\ln \left ( 1+\sqrt{3+2\,x} \right ) -6\,\ln \left ( -1+\sqrt{3+2\,x} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(3+2*x)^(1/2)/(3*x^2+5*x+2),x)

[Out]

-2/3*(3+2*x)^(1/2)-34/9*arctanh(1/5*15^(1/2)*(3+2*x)^(1/2))*15^(1/2)+6*ln(1+(3+2*x)^(1/2))-6*ln(-1+(3+2*x)^(1/
2))

________________________________________________________________________________________

Maxima [A]  time = 1.45391, size = 95, normalized size = 1.73 \begin{align*} \frac{17}{9} \, \sqrt{15} \log \left (-\frac{\sqrt{15} - 3 \, \sqrt{2 \, x + 3}}{\sqrt{15} + 3 \, \sqrt{2 \, x + 3}}\right ) - \frac{2}{3} \, \sqrt{2 \, x + 3} + 6 \, \log \left (\sqrt{2 \, x + 3} + 1\right ) - 6 \, \log \left (\sqrt{2 \, x + 3} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(1/2)/(3*x^2+5*x+2),x, algorithm="maxima")

[Out]

17/9*sqrt(15)*log(-(sqrt(15) - 3*sqrt(2*x + 3))/(sqrt(15) + 3*sqrt(2*x + 3))) - 2/3*sqrt(2*x + 3) + 6*log(sqrt
(2*x + 3) + 1) - 6*log(sqrt(2*x + 3) - 1)

________________________________________________________________________________________

Fricas [A]  time = 1.51658, size = 208, normalized size = 3.78 \begin{align*} \frac{17}{9} \, \sqrt{5} \sqrt{3} \log \left (-\frac{\sqrt{5} \sqrt{3} \sqrt{2 \, x + 3} - 3 \, x - 7}{3 \, x + 2}\right ) - \frac{2}{3} \, \sqrt{2 \, x + 3} + 6 \, \log \left (\sqrt{2 \, x + 3} + 1\right ) - 6 \, \log \left (\sqrt{2 \, x + 3} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(1/2)/(3*x^2+5*x+2),x, algorithm="fricas")

[Out]

17/9*sqrt(5)*sqrt(3)*log(-(sqrt(5)*sqrt(3)*sqrt(2*x + 3) - 3*x - 7)/(3*x + 2)) - 2/3*sqrt(2*x + 3) + 6*log(sqr
t(2*x + 3) + 1) - 6*log(sqrt(2*x + 3) - 1)

________________________________________________________________________________________

Sympy [A]  time = 5.45273, size = 102, normalized size = 1.85 \begin{align*} - \frac{2 \sqrt{2 x + 3}}{3} + \frac{170 \left (\begin{cases} - \frac{\sqrt{15} \operatorname{acoth}{\left (\frac{\sqrt{15} \sqrt{2 x + 3}}{5} \right )}}{15} & \text{for}\: 2 x + 3 > \frac{5}{3} \\- \frac{\sqrt{15} \operatorname{atanh}{\left (\frac{\sqrt{15} \sqrt{2 x + 3}}{5} \right )}}{15} & \text{for}\: 2 x + 3 < \frac{5}{3} \end{cases}\right )}{3} - 6 \log{\left (\sqrt{2 x + 3} - 1 \right )} + 6 \log{\left (\sqrt{2 x + 3} + 1 \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)**(1/2)/(3*x**2+5*x+2),x)

[Out]

-2*sqrt(2*x + 3)/3 + 170*Piecewise((-sqrt(15)*acoth(sqrt(15)*sqrt(2*x + 3)/5)/15, 2*x + 3 > 5/3), (-sqrt(15)*a
tanh(sqrt(15)*sqrt(2*x + 3)/5)/15, 2*x + 3 < 5/3))/3 - 6*log(sqrt(2*x + 3) - 1) + 6*log(sqrt(2*x + 3) + 1)

________________________________________________________________________________________

Giac [A]  time = 1.13052, size = 100, normalized size = 1.82 \begin{align*} \frac{17}{9} \, \sqrt{15} \log \left (\frac{{\left | -2 \, \sqrt{15} + 6 \, \sqrt{2 \, x + 3} \right |}}{2 \,{\left (\sqrt{15} + 3 \, \sqrt{2 \, x + 3}\right )}}\right ) - \frac{2}{3} \, \sqrt{2 \, x + 3} + 6 \, \log \left (\sqrt{2 \, x + 3} + 1\right ) - 6 \, \log \left ({\left | \sqrt{2 \, x + 3} - 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(1/2)/(3*x^2+5*x+2),x, algorithm="giac")

[Out]

17/9*sqrt(15)*log(1/2*abs(-2*sqrt(15) + 6*sqrt(2*x + 3))/(sqrt(15) + 3*sqrt(2*x + 3))) - 2/3*sqrt(2*x + 3) + 6
*log(sqrt(2*x + 3) + 1) - 6*log(abs(sqrt(2*x + 3) - 1))